Broadband Perfect Absorber with Monolayer MoS2 and Hexagonal Titanium Nitride Nano-disk Array
نویسندگان
چکیده
A broadband metamaterial absorber (MA) composed of hexagonal-arranged single-sized titanium nitride (TiN) nano-disk array and monolayer molybdenum disulfide (MoS2) is studied using finite-difference time-domain (FDTD) simulations. The structure of TiN nano-disk array/dielectric silica (SiO2)/aluminum (Al) is adopted in our design. By optimizing the dimension parameters of the structure, an average absorption of 96.1% is achieved from 400 to 850 nm. In addition, by inserting a monolayer MoS2 which has high absorption at the short wavelength side underneath the TiN nano-disk array, an average absorption of 98.1% over the entire visible regime from 400 to 850 nm was achieved, with a peak absorption near 100% and absorption over 99% from 475 to 772 nm. Moreover, the absorber presented in this paper is polarization insensitive. This compact and unique design with TiN nano-disk/monolayer MoS2/ SiO2/Al structure may have great potential for applications in photovoltaics and light trapping.
منابع مشابه
Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron Nitride Substrate.
Monolayer MoS2 is synthesized on hexagonal boron nitride (h-BN) flakes with a simple, high-yield method. Monolayer MoS2 on h-BN exhibits improved optical quality. Combining the theoretical and experimental analysis, it is concluded that the enhanced photoluminescence and Raman intensities of monolayer MoS2 probably originate from the relatively weak doping effect from the h-BN substrate rather ...
متن کاملRole of the seeding promoter in MoS2 growth by chemical vapor deposition.
The thinnest semiconductor, molybdenum disulfide (MoS2) monolayer, exhibits promising prospects in the applications of optoelectronics and valleytronics. A uniform and highly crystalline MoS2 monolayer in a large area is highly desirable for both fundamental studies and substantial applications. Here, utilizing various aromatic molecules as seeding promoters, a large-area, highly crystalline, a...
متن کاملBroadband terahertz metamaterial absorber based on sectional asymmetric structures
We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure compose...
متن کاملVertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.
When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a p...
متن کاملInterface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride
MoS2 is a layered two-dimensional semiconductor with a direct band gap of 1.8 eV. The MoS2/bulk semiconductor system offers a new platform for solar cell device design. Different from the conventional bulk p-n junctions, in the MoS2/bulk semiconductor heterostructure, static charge transfer shifts the Fermi level of MoS2 toward that of bulk semiconductor, lowering the barrier height of the form...
متن کامل